1 Prädikatenlogik

- Syntax der PL
 - Variable x_i (i = 1,2,3,...)
 - Prädikatssymbol P_i^k k Stelligkeit des P-Symbols, i laufende Nummer
 - Funktionssymbol f_i^k k Stelligkeit , i laufende Nummer

• Terme

- Jede Variable ist ein Term
- falls f ein Funktionssymbol ist, und $t_1,...,t_k$ Terme sind, so ist auch $f_i^k(t_1,...,t_k)$ ein Term
- Funktionssymbole der Stelligkeit 0: f_i^0 ist Konstante
- Prädikatenlogische Formel $F \in PL$ ist
 - 1. falls P_i^k Prädikatssymbol ist und $t_1, ..., t_k$ Terme sind, so ist $P_i^k(t_1, ..., t_k)$ ein präd. Formel (atomare Formel der PL)
 - 2. ist $F \in PL$, so auch $\neg F$
 - 3. F und $G \in PL$, so auch $(F \vee G)$ und $(F \wedge G)$
 - 4. falls z eine Variable ist $(z = x_j)$ und $F \in PL$, so auch \exists z F (Existenzoperator) und auch \forall z F (All-Operator)
 - 5. Nur solche Zeichenketten, der gemäß 1-4 in endlich vielen Schrfitten gebildet werden können sind präd. Formeln

• Variablen

gebunden, falls x in der Teilformel \exists x G oder \forall x G vorkommt

Kommt keine Variable sowohl frei als auch gebunden vor, so heißt die Formel bereinigt.

Eine Formel $F \in PL$ heißt Aussge g.d.w. jede Variable von F gebunden ist und nicht frei vorkommt.

• Matrix einer Formel F: F*

erhält man aus F durch Streichen aller Zeichen \exists und \forall einschließlich der jeweils folgenden Variablen

• Semantik von PL

- Wähle eine Grundmenge (Universum)
- interpretiere jedes Prädikatssymbol P^k durch ein k-stelliges Prädikat über U
- interpretiere jedes Funktionssymbol f^k durch eine k-stellige Funktion über U

• passende Strukturen

 $A = (U_A, I_A)$ mit U: Universum, I: Interpretation unter A

 I_A bildet jedes k-stellige Prädikatssymbol P_k ab in ein k-stelliges Prädikat über U (Prädikat ist Relation: Teilmenge des kartesischen Produktes)

$$P_{\mathcal{A}} \longrightarrow \mathbb{R} \subseteq U_{\mathcal{A}}^k$$

 I_A bildet jedes k-stellige Funktionssymbol f_k ab in eine k-stellige Funktion über U_A

jeder freien Variablen wird ein Element aus U_A zugeordnet

• erfüllbare Formel

F hat Modell \Leftrightarrow es existiert eine passende Struktur $\mathcal{A}(U_{\mathcal{A}},I_{\mathcal{A}})$, so dass $\mathcal{A}(F)=1$ Falls jede passende Struktur für F erfüllend ist, so heißt F gültig F heißt unerfüllbar \Leftrightarrow jede passende Struktur ist nicht erfüllend

• semantische Äquivalenz

Zwei Formeln F, G \in PL heißen (semantisch) äquivalent, falls es für jede für beide Formeln passene Struktur $\mathcal{A}(U_{\mathcal{A}},I_{\mathcal{A}})$ gilt $\mathcal{A}(F)=\mathcal{A}(G)$

Äquivalenzen

- es gelten alle aussgenlogischen Äquivalenzen
- $\neg \forall x f \equiv \exists x \neg F$
- $\neg \exists x f \equiv \forall x \neg F$
- Falls x in G nicht frei vorkommt gilt:

$$(\forall x \ F \land G) \equiv \forall x \ (F \land G) \ \text{und} \ (\forall x \ F \lor G) \equiv \forall x \ (F \lor G)$$
$$(\exists x \ F \land G) \equiv \exists x \ (F \land G) \ \text{und} \ (\exists x \ F \lor G) \equiv \exists x \ (F \lor G)$$

$$- (\forall x \ F \land \forall x \ G) \equiv \forall x \ (F \land G)$$

$$(\exists x \; \mathsf{F} \vee \exists x \; \mathsf{G}) \equiv \exists x \; (F \vee G)$$

$$- \forall x \forall y \ F \equiv \forall y \forall x \ F$$
$$\exists x \exists y \ F \equiv \exists y \exists x \ F$$

– Vorsicht:

$$(\forall x \ F \lor \forall x \ G) \not\equiv \forall x \ (F \lor G)$$
$$(\exists x \ F \land \exists x G) \not\equiv \exists x \ (F \land G)$$

Substitution

Sei $F \in PL$, x eine Variable und t ein Term. Dann ist F[x/t] die Formel $\in PL$, die man aus F erhält, wenn man jedes freie Vorkommen von x in F durch den Term t ersetzt.

• Lemma (gebundene Umbenennung)

Sei
$$F = QzG \in PL$$
 mit $Q \in \{ \forall, \exists \}$ (Q: Quantor)

Es sei y eine Variable, die nicht in G vorkommt.

Dann gilt $F \equiv QyG[z,y]$

• Lemma

Zu jeder Formel $F\in PL$ gibt es eine (semantisch) äquivalente Formel G die bereinigt ist

• Pränexform (Normalform)

Eine Formel $F \in PL$ heißt pränex oder in Pränexform, falls sie die Form hat:

$$F = Q_1 y_1 Q_2 y_2, ..., Q_n y_n F^*$$
 (F^* enthält keine Quantoren)

Satz

Für jede Formel $F \in PL$ gibt es eine äquivalente (und bereinigte) Formel BPF(F) in Pränexform $F \equiv BPF(F)$

BPF: bereinigte Pränexform

Beweis: durch strukturelle Induktion (mit Äquivalenzregeln)

• Skolem-Normalform mit Skolem-Algorithmus

Input: F in Pränexform (bereinigt), $F = Q_1y_1Q_2y_2...Q_ny_nF^*$

while F enthält einen Existenzquantor do

o.E.
$$F = \forall y_1 \forall y_2 ... \forall y_k \exists y_{k+1} (... Q_n y_n F^*)$$

Sei $f_{j_1}^k$ ein neues k-stelliges Funktionssymbol

ersetze
$$F \leftarrow \forall y_1 \forall y_2 ... \forall y_k G_{[y_{k+1}|f_{i_1}(y_1,y_2,...,y_k)]}$$

end

Output: Output ist eine Formel aus PL ohne Existenzquantor

• Satz (Erfüllbarkeitsäquivalenz)

Für jede Formel F in BPF gilt:

F ist erfüllbar \Leftrightarrow SKOLEM(F) erfüllbar

- Entscheidung der Erfüllbarkeit: nutze Herbrand-Universum (Jaques Herbrand) $U_H(F)$: Menge aller variablenfreien Terme von F und Funktionssymbole $U_H(F) = \{a_1, ...a_{q_0}, f_1^1(a_1), ...f_1^1(a_{q_0}), f_2^1(a_1),, f_2^1(a_{q_0}), ..., f_2^2(a_{q_0}, a_1), ...\}$ ist abzählbar unendlich, falls es min. eine Konstante gibt und ein k-stelliges Funktionssymbol mit $k \geq 1$
- Definition Herbrand-Struktur

$$A = (U_A, I_A)$$

A ist Herbrand-Struktur, wenn gilt:

- 1. $U_A = U_H(F)$
- 2. für jedes in F vorkommende Funktionssymbol f^k und $t_1,...,t_k \in U_H(F)$ ist $\mathcal{A}(f^k)(t_1,...,t_k) = f(t_1,...,t_k) \in U_H(F)$ kurz: $\mathcal{A}(t) = t$
- Satz (F in Skolemform)

F erfüllbar ⇔ F besitzt Herbrand-Modell

Beweis:

- ←: klar
- →: Konstruktion des Herbrand-Modell
- Herbrand-Expansion

$$F = \forall x_1 \forall x_2 ... \forall x_n F^*$$
Dann ist E(F) = $\{F^*[x_1|t_1][x_2|t_2]...[x_n|t_n] \mid t_1, ..., t_n \in U_H(F)\}$
z.B.: $\forall x \forall y \forall z P(x, f(y), g(x, z))$

$$U_H(F) = \{a, f(a), g(a, a), f(g(a, a)), g(f(a), a)\}$$
E(F) = $\{P(a, f(a), g(a, a)), P(g(a, a), f(f(a)), g(a, a)), ...\} = \{F_1, F_2, F_3, ...\}$

• Satz (Gödel-Herbrand-Skolem)

(Menge von AL-Formeln)

Für jede Aussagen $F \in PL$ in Skolemnormalform gilt:

F erfüllbar \Leftrightarrow E(F) erfüllbar

• Satz (Herbrand)

Eine Aussage F (in Skolemform) ist unerfüllbar \Leftrightarrow es ex. endliche Teilmenge von E(F) die (im AL-Sinne) unerfüllbar ist

• Algorithmus von Gilmore

```
Input: F in Skolemform, E(F) n=0 wiederhole n=n+1 bis (F_1 \wedge F_2 \wedge ... \wedge F_n) ist unerfüllbar Output: gibt "F ist unerfüllbar" Semi-Entscheidungsverfahren Folge: F ist unerfüllbar \Leftrightarrow \neg F ist gültig \mathcal{A}(F)=0 \Leftrightarrow \mathcal{A}(\neg F)=1
```

- Das Unerfüllbarkeitsproblem und das Gültigkeitsproblem sind semi-entscheidbar
- Satz

Das Entscheidungsproblem der PL (gegeben eine Formel $F \in PL$: ist F erfüllbar?) ist unentscheidbar!

• Grundresolution (der PL)

Input: Aussage F in Skolem-Form mit Matrix F^* in KNF

$$E(F) = \{F_1, F_2, ...\}$$

i = 0

 $M = \emptyset$

wiederhole

i = i+1

 $M = M \cup \{F_i\}$

 $M = Res^*(M)$

wobei () \in M

gibt "unerfüllbar" aus und stoppt